*** Welcome to piglix ***

Ball joint


In an automobile, ball joints are spherical bearings that connect the control arms to the steering knuckles. They are used on virtually every automobile made and work similarly to the ball-and-socket design of the human hip joint.

A ball joint consists of a bearing stud and socket enclosed in a casing; all these parts are made of steel. The bearing stud is tapered and threaded, and fits into a tapered hole in the steering knuckle. A protective encasing prevents dirt from getting into the joint assembly. Usually, this is a rubber-like boot that allows movement and expansion of lubricant. Motion-control ball joints tend to be retained with an internal spring, which helps to prevent vibration problems in the linkage.

The "offset" ball joint provides means of movement in systems where thermal expansion and contraction, shock, seismic motion, and torsional motions, and forces are present.

A ball joint is used for allowing free movement in two planes at the same time, including rotating in those planes. Combining two such joints with control arms enables motion in all three planes, allowing the front end of an automobile to be steered and a spring and shock (damper) suspension to make the ride comfortable.

A simple kingpin suspension requires that the upper and lower control arms (wishbones) have pivot axes that are parallel, and in strict geometric relationship to the kingpin, or the top and bottom trunnions, which connect the kingpin to the control arms, would be severely stressed and the bearings would suffer severe wear. In practice, many vehicles had elastomeric bearings in the horizontal pivots of the trunnions, which allowed some small amount of flexibility, however this was insufficient to allow much adjustment of caster to be made, and also introduced compliance where the suspension designer may not have desired it in his quest for optimum handling. camber angle could generally be adjusted by moving both inner pivots of either the upper or lower control arm inwards or outwards by an exactly equal amount. But compliance of the control arm inner pivots, typically due to the use of elastomeric bearings, would again cause the trunnions to be stressed. The suspension designer's freedom was severely limited, it was necessary to have some compliance where it might not be wanted, and very little where more would have been useful in absorbing the fore and aft impact loading from bumps.


...
Wikipedia

...