*** Welcome to piglix ***

Brownian motor


Brownian motors are nano-scale or molecular devices by which thermally activated processes (chemical reactions) are controlled and used to generate directed motion in space and to do mechanical or electrical work. These tiny engines operate in an environment where viscosity dominates inertia, and where thermal noise makes moving in a specific direction as difficult as walking in a hurricane: the forces impelling these motors in the desired direction are minuscule in comparison with the random forces exerted by the environment. Because this type of motor is so strongly dependent on random thermal noise, Brownian motors are feasible only at the nanometer scale.

The term "Brownian motor" was originally coined by Peter Hänggi in 1995: A distinct feature of a Brownian motor is—in contrast to a molecular motor—that the output response is typically coupled only loosely to the input perturbation and action of fluctuations; see in Hänggi, Peter; Marchesoni, Fabio (2009). "Artificial Brownian motors: Controlling transport on the nanoscale" (PDF). Reviews of Modern Physics. 81 (1): 387. arXiv:0807.1283Freely accessible. Bibcode:2009RvMP...81..387H. doi:10.1103/RevModPhys.81.387. .


...
Wikipedia

...