*** Welcome to piglix ***

Dictyostelium discoideum

Dictyostelium discoideum
Dictyostelium Fruiting Bodies.JPG
Fruiting bodies of D. discoideum
A migrating D. discoideum whose boundary is colored by curvature, scale bar: 5 µm, duration: 22 seconds
Scientific classification
Domain: Eukaryota
(unranked): Amoebozoa
Infraphylum: Mycetozoa
Class: Dictyostelia
Order: Dictyosteliida
Family: Dictyosteliidae
Genus: Dictyostelium
Species: D. discoideum
Binomial name
Dictyostelium discoideum
Raper, 1935

Dictyostelium discoideum is a species of soil-living amoeba belonging to the phylum Amoebozoa, infraphylum Mycetozoa. Commonly referred to as slime mold, D. discoideum is a eukaryote that transitions from a collection of unicellular amoebae into a multicellular slug and then into a fruiting body within its lifetime. Its unique asexual lifecycle consists of four stages: vegetative, aggregation, migration, and culmination. The lifecycle of D. discoideum is relatively short, which allows for timely viewing of all stages. The cells involved in the lifecycle undergo movement, chemical signaling, and development, which are applicable to human cancer research. The simplicity of its lifecycle makes D. discoideum a valuable model organism to study genetic, cellular, and biochemical processes in other organisms.

In the wild, D. discoideum can be found in soil and moist leaf litter. Its primary diet consists of bacteria, such as Escherichia coli, found in the soil and decaying organic matter. Uninucleate amoebae of D. discoideum consume bacteria found in its natural habitat, which includes deciduous forest soil and decaying leaves.

The life cycle of D. discoideum begins as spores are released from a mature sorocarp (fruiting body). Myxamoebae hatch from the spores under warm and moist conditions. During their vegetative stage, the myxamoebae divide by mitosis as they feed on bacteria. The bacteria secrete folic acid, attracting the myxamoebae. When the supply of bacteria is depleted, the myxamoebae enter the aggregation stage.

During aggregation, starvation initiates the creation of a biochemical machinery that includes glycoproteins and adenylyl cyclase. The glycoproteins allow for cell-cell adhesion, and adenylyl cyclase creates cyclic AMP. Cyclic AMP is secreted by the amoebae to attract neighboring cells to a central location. As they move toward the signal, they bump into each other and stick together by the use of glycoprotein adhesion molecules.


...
Wikipedia

...