*** Welcome to piglix ***

Exonuclease


Exonucleases are enzymes that work by cleaving nucleotides one at a time from the end (exo) of a polynucleotide chain. A hydrolyzing reaction that breaks phosphodiester bonds at either the 3' or the 5' end occurs. Its close relative is the endonuclease, which cleaves phosphodiester bonds in the middle (endo) of a polynucleotide chain. Eukaryotes and prokaryotes have three types of exonucleases involved in the normal turnover of mRNA: 5' to 3' exonuclease, which is a dependent decapping protein; 3' to 5' exonuclease, an independent protein; and poly(A)-specific 3' to 5' exonuclease.

In both archaea and eukaryotes, one of the main routes of RNA degradation is performed by the multi-protein exosome complex, which consists largely of 3' to 5' exoribonucleases.

RNA polymerase II is known to be in effect during transcriptional termination; it works with a 5' exonuclease (human gene Xrn2) to degrade the newly formed transcript downstream, leaving the polyadenylation site and simultaneously shooting the polymerase. This process involves the exonuclease's catching up to the pol II and terminating the transcription.

Pol I then synthesizes DNA nucleotides in place of the RNA primer it had just removed. DNA polymerase I also has 3' to 5' and 5' to 3' exonuclease activity, which is used in editing and proofreading DNA for errors. The 3' to 5' can only remove one mononucleotide at a time, and the 5' to 3' activity can remove mononucleotides or up to 10 nucleotides at a time.

In 1971, Lehman IR discovered exonuclease I in E. coli. Since that time, there have been numerous discoveries including: exonuclease, II, III, IV, V, VI, VII, and VIII. Each type of exonuclease has a specific type of function or requirement.


...
Wikipedia

...