*** Welcome to piglix ***

Memory timings


Memory timings or RAM timings describe the performance of synchronous dynamic random-access memory (SDRAM) using four parameters: CL, TRCD, TRP, and TRAS in units of clock cycles; they are commonly written as four numbers separated with dashes, e.g. 7-8-8-24. The fourth (tRAS) is often omitted, or a fifth, the Command rate, sometimes added (normally 2T or 1T, also written 2N, 1N). These parameters specify the latencies (time delays) that affect speed of random access memory. Lower numbers usually imply faster performance. What determines absolute system performance is actual latency time, usually measured in nanoseconds.

When translating memory timings into actual latency, it is important to note that they are in units of clock cycles, which for double data rate memory is half the speed of the commonly quoted transfer rate. Without knowing the clock cycle times, it is impossible to state if one set of numbers is "faster" than another.

For example, DDR3-2000 memory has a 1000 MHz clock frequency, which yields a 1 ns clock cycle. With this 1 ns clock, CL=7 gives an absolute latency of 7 ns. Faster DDR3-2666 (with a 1333 MHz clock, or 0.75 ns per cycle), may have a larger CL=9, but that still results in a shorter absolute latency of 6.75 ns.

Modern DIMMs include a Serial Presence Detect (SPD) ROM chip that contains recommended memory timings for automatic configuration. The BIOS on a PC may allow the user to make adjustments in an effort to increase performance (with possible risk of decreased stability) or, in some cases, to increase stability (by using suggested timings).

Note: Memory bandwidth measures the throughput of memory, and is generally limited by the transfer rate, not latency. By interleaving access to SDRAM's multiple internal banks, it is possible to transfer data continuously at the peak transfer rate. It is possible for increased bandwidth to come at a cost in latency. In particular, each successive generation of DDR memory has higher transfer rates but the absolute latency does not change significantly, and especially when first appearing on the market, the new generation generally has longer latency that the previous one.


...
Wikipedia

...