*** Welcome to piglix ***

Monazite

Monazite
Monazit - Madagaskar.jpg
General
Category Phosphate minerals
Formula
(repeating unit)
(Ce,La)PO4
Strunz classification 8.AD.50
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group P21/n
Identification
Color Reddish brown, brown, pale yellow, pink, green, gray
Crystal habit Commonly as prismatic or wedge-shaped crystals
Twinning Contact twins common
Cleavage Distinct on [100] poor on [010]
Fracture Conchoidal to uneven
Mohs scale hardness 5.0 to 5.5
Luster Resinous, vitreous to adamantine
Streak White
Diaphaneity Translucent to opaque
Specific gravity 4.6–5.7 (4.98–5.43 for Monazite-Ce)
Optical properties Biaxial (+)
Refractive index nα = 1.770–1.793
nβ = 1.778–1.800
nγ = 1.823–1.860
Pleochroism Weak
2V angle 10–26°
Other characteristics Radioactive if thorium-rich, dull brown cathodoluminescence, paramagnetic
References

Monazite is a reddish-brown phosphate mineral containing rare earth metals. It occurs usually in small isolated crystals. It has a hardness of 5.0 to 5.5 on the Mohs scale of mineral hardness and is relatively dense, about 4.6 to 5.7 g/cm3. There are at least four different kinds of monazite, depending on relative elemental composition of the mineral:

The elements in parentheses are listed in the order of their relative proportion within the mineral: lanthanum is the most common rare earth element in monazite-(La), and so forth. Silica (SiO2) is present in trace amounts, as well as small amounts of uranium and thorium. Due to the alpha decay of thorium and uranium, monazite contains a significant amount of helium, which can be extracted by heating.

Monazite is an important ore for thorium, lanthanum, and cerium. It is often found in placer deposits. India, Madagascar, and South Africa have large deposits of monazite sands. The deposits in India are particularly rich in monazite.

Monazite is radioactive due to the presence of thorium and, less commonly, uranium. Because of its radioactive nature, monazite is used for monazite geochronology to study geological events, such as crystallization, heating, or deformation of the rocks containing monazite.

The name monazite comes from the Greek μονάζειν (to be solitary), via German Monazit, in allusion to its isolated crystals.


All monazites adopt the same structure, meaning that the connectivity of the atoms is very similar to other compounds of the type M(III)PO4. The M(III) centers have a distorted coordination sphere being surrounded by eight oxides with M-O distances around 2.6 Å in length. The phosphate anion is tetrahedral, as usual. The same structural motif is observed for lead chromate (PbCrO4).


...
Wikipedia

...