*** Welcome to piglix ***

Motor learning


Motor learning is a change, resulting from practice or a novel experience, in the capability for responding. It often involves improving the smoothness and accuracy of movements and is obviously necessary for complicated movements such as speaking, playing the piano, and climbing trees; but it is also important for calibrating simple movements like reflexes, as parameters of the body and environment change over time. Motor learning research often considers variables that contribute to motor program formation (i.e., underlying skilled motor behaviour), sensitivity of error-detection processes, and strength of movement schemas (see motor program). Motor learning is "relatively permanent", as the capability to respond appropriately is acquired and retained. As a result, the temporary processes that affect behaviour during practice or experience should not be considered learning, but rather transient performance effects. As such, the main components underlying the behavioural approach to motor learning are structure of practice and feedback given. The former pertains to the manipulation of timing and organization of practice (potentially for different subtasks or variations of the task) for optimal information retention (also see varied practice), while the latter pertains to the influence of feedback on the preparation, anticipation, and guidance of movement.

Contextual interference was originally defined as "function interference in learning responsible for memory improvement". Contextual interference effect is "the effect on learning of the degree of functional interference found in a practice situation when several tasks must be learned and are practiced together". Variability of practice (or varied practice) is an important component to contextual interference, as it places task variations within learning. Although varied practice may lead to poor performance throughout the acquisition phase, it is important for the development of the schemata, which is responsible for the assembly and improved retention and transfer of motor learning.

Despite the improvements in performance seen across a range of studies, one limitation of the contextual interference effect is the uncertainty with regard to the cause of performance improvements as so many variables are constantly manipulated. In a review of literature, the authors identify that there were few patterns to explain the improvements in experiments that use the contextual interference paradigm. Although there were no patterns in the literature, common areas and limitations that justified interference effects were identified:


...
Wikipedia

...