*** Welcome to piglix ***

Novikov self-consistency principle


The Novikov self-consistency principle, also known as the Novikov self-consistency conjecture and Larry Niven's law of conservation of history, is a principle developed by Russian physicist Igor Dmitriyevich Novikov in the mid-1980s. Novikov intended it to solve the problem of paradoxes in time travel, which is theoretically permitted in certain solutions of general relativity that contain what are known as closed timelike curves. The principle asserts that if an event exists that would cause a paradox or any "change" to the past whatsoever, then the probability of that event is zero. It would thus be impossible to create time paradoxes.

Physicists have long known that some solutions to the theory of general relativity contain closed timelike curves—for example the Gödel metric. Novikov discussed the possibility of closed timelike curves (CTCs) in books he wrote in 1975 and 1983, offering the opinion that only self-consistent trips back in time would be permitted. In a 1990 paper by Novikov and several others, "Cauchy problem in spacetimes with closed timelike curves", the authors state:

Among the co-authors of this 1990 paper were Kip Thorne, Mike Morris, and Ulvi Yurtsever, who in 1988 had stirred up renewed interest in the subject of time travel in general relativity with their paper "Wormholes, Time Machines, and the Weak Energy Condition", which showed that a new general relativity solution known as a traversable wormhole could lead to closed timelike curves, and unlike previous CTC-containing solutions, it did not require unrealistic conditions for the universe as a whole. After discussions with another co-author of the 1990 paper, John Friedman, they convinced themselves that time travel need not lead to unresolvable paradoxes, regardless of the type of object sent through the wormhole.

In response, physicist Joseph Polchinski wrote them a letter arguing that one could avoid questions of free will by considering a potentially paradoxical situation involving a billiard ball sent back in time through a wormhole. In this situation, the billiard ball is fired into the wormhole at an angle such that, if it continues along its path, it will exit in the past at just the right angle to collide with its earlier self, knocking it off course and preventing it from entering the wormhole in the first place. Thorne deemed this problem "Polchinski's paradox".


...
Wikipedia

...