Planetary mass is a measure of the mass of a planet-like object. Within the Solar System, planets are usually measured in the astronomical system of units, where the unit of mass is the solar mass (M☉), the mass of the Sun. In the study of extrasolar planets, the unit of measure is typically the mass of Jupiter (MJ) for large gas giant planets, and the mass of Earth (M⊕) for smaller rocky terrestrial planets.
The mass of a planet within the Solar System is an adjusted parameter in the preparation of ephemerides. There are three variations of how planetary mass can be calculated:
The choice of solar mass, M☉, as the basic unit for planetary mass comes directly from the calculations used to determine planetary mass. In the most precise case, that of the Earth itself, the mass is known in terms of solar masses to twelve significant figures: the same mass, in terms of kilograms or other Earth-based units, is only known to five significant figures, which is less than a millionth as precise.
The difference comes from the way in which planetary masses are calculated. It is impossible to "weigh" a planet, and much less the Sun, against the sort of mass standards which are used in the laboratory. On the other hand, the orbits of the planets give a great range of observational data as to the relative positions of each body, and these positions can be compared to their relative masses using Newton's law of universal gravitation (with small corrections for General Relativity where necessary). To convert these relative masses to Earth-based units such as the kilogram, it is necessary to know the value of the Newtonian gravitational constant, G. This constant is remarkably difficult to measure in practice, and its value is only known to a precision of one part in ten-thousand.