*** Welcome to piglix ***

Polynomial factorization


In mathematics and computer algebra, factorization of polynomials or polynomial factorization is the process of expressing a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental tools of the computer algebra systems.

The history of polynomial factorization starts with Hermann Schubert who in 1793 described the first polynomial factorization algorithm, and Leopold Kronecker, who rediscovered Schubert's algorithm in 1882 and extended it to multivariate polynomials and coefficients in an algebraic extension. But most of the knowledge on this topic is not older than circa 1965 and the first computer algebra systems. In a survey of the subject, Erich Kaltofen wrote in 1982 (see the bibliography, below):

When the long-known finite step algorithms were first put on computers, they turned out to be highly inefficient. The fact that almost any uni- or multivariate polynomial of degree up to 100 and with coefficients of a moderate size (up to 100 bits) can be factored by modern algorithms in a few minutes of computer time indicates how successfully this problem has been attacked during the past fifteen years.

Nowadays, modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits.

Polynomial rings over the integers or over a field are unique factorization domains. This means that every element of these rings is a product of a constant and a product of irreducible polynomials (those that are not the product of two non-constant polynomials). Moreover, this decomposition is unique up to multiplication of the factors by invertible constants.


...
Wikipedia

...