*** Welcome to piglix ***

Reductive elimination


Reductive elimination is an elementary step in organometallic chemistry in which the oxidation state of the metal center decreases while forming a new covalent bond between two ligands. It is the microscopic reverse of oxidative addition, and is often the product-forming step in many catalytic processes. Since oxidative addition and reductive elimination are reverse reactions, the same mechanisms apply for both processes, and the product equilibrium depends on the thermodynamics of both directions.

Reductive elimination is often seen in higher oxidation states, and can involve a two-electron change at a single metal center (mononuclear) or a one-electron change at each of two metal centers (binuclear, dinuclear, or bimetallic).

For mononuclear reductive elimination, the oxidation state of the metal decreases by two, while the d-electron count of the metal increases by two. This pathway is common for d8 metals Ni(II), Pd(II), and Au(III) and d6 metals Pt(IV), Pd(IV), Ir(III), and Rh(III). Additionally, mononuclear reductive elimination requires that the groups being eliminated must be cis to one another on the metal center.

For binuclear reductive elimination, the oxidation state of each metal decreases by one, while the d-electron count of each metal increases by one. This type of reactivity is generally seen with first row metals, which prefer a one-unit change in oxidation state, but has been observed in both second and third row metals.

As with oxidative addition, several mechanisms are possible with reductive elimination. The prominent mechanism is a concerted pathway, meaning that it is a nonpolar, three-centered transition state with retention of stereochemistry. In addition, an SN2 mechanism, which proceeds with inversion of stereochemistry, or a radical mechanism, which proceeds with obliteration of stereochemistry, are other possible pathways for reductive elimination.


...
Wikipedia

...