*** Welcome to piglix ***

Wikipedia:Why MEDRS?


The result of all of this is that the world is awash with content about health. All kinds of media holler at us every day, about "new THIS" and "shocking THAT". Very often that content is dead wrong, or dramatically overstates what we can confidently say, based on the science. And many people have strong ideas that are not based on science at all.

Our mission is to express the sum of human knowledge - "accepted knowledge", in the words of WP:NOT. We are all editors. Our role is to read and understand the reliable secondary and tertiary sources, in which experts have pulled the basic research together into a coherent picture, and summarize and compile what those sources say, in clear English that any reader with a decent education can understand.

In articles related to health, editors who want to cite primary sources and create extensive or strong content based on them generally fall into one of three groups.

It is hard for people to think like scholars, with discipline, and actually listen to and be taught by reliable, independent, secondary sources instead of acting like barroom philosophers who shoot from the hip or letting media hype drive them.

Biology is difficult. It is still a young science, and our knowledge of even basic things is fragmentary, and even our big-picture ideas are changing all the time. Human biology — our understanding of what is going on inside healthy people and inside sick people — is even harder, and there are serious barriers to furthering our understanding. People in the physical sciences or technology seem to have an especially hard time understanding this.

The physical sciences have given us deep insight into material reality, and because the science there has progressed so far, we can do amazing things. For example, Moore's law is a direct result of our advances in physics and materials science and our ability to apply science — to create technology to serve us, to the point where we now have amazing things like smartphones — computers we can hold in our hands and interact with in intuitive ways, capabilities that just a couple decades ago would have taken an entire room full of equipment to provide and that only cutting-edge scientists could operate.

Physics deals with dead matter. We can poke and prod without doing harm, and what we are looking at is what we are looking at. Life (made of physical matter, of course) is way more complicated. In comparison, "dead" is easy; life is hard.

Biology remains primarily an observational science. Don't get me wrong — biologists do experiments — they poke and prod living things in various ways, to help them try to flesh out the pictures we are still forming about what is going on in living things. But we are not in possession of a set of "laws of nature" such as those that govern physics. Even what we once called the central dogma of molecular biology — that DNA "makes" RNA which "makes" proteins — has turned out to be far more complicated than biologists originally thought. We still don't fully understand what something as basic as aspirin does in the human body, much less what it does in a particular person's body. We understand a lot, but our knowledge is far from perfect. Medicine like aspirin is technology — we are doing our best to apply the findings of biological science to solve problems. We understand what aspirin itself is, very well (the chemistry, not the biology), but what happens when you put it into an average human body, or a particular person's body, is another question altogether. The science is too weak in biology, especially human biology, to apply and evolve technology with anywhere near the speed of information technology.


...
Wikipedia

...