*** Welcome to piglix ***

Gravitational locking


Tidal locking (also called gravitational locking or captured rotation) occurs when the long-term interaction between a pair of co-orbiting astronomical bodies drives the rotation rate of at least one of them into the state where there is no more net transfer of angular momentum between this body (e.g. a planet) and its orbit around the second body (e.g. a star); this condition of "no net transfer" must be satisfied over the course of one orbit around the second body. This doesn't mean that the rotation and spin rates are always perfectly synchronized throughout an orbit, as there can be some back and forth transfer over the course of an orbit.

This effect arises from the gravitational gradient (tidal force) between the co-orbiting bodies, acting over a sufficiently long period of time.

In the special case where the orbital eccentricity and obliquity are nearly zero, tidal locking results in one hemisphere of the revolving object constantly facing its partner, an effect known as synchronous rotation. For example, the same side of the Moon always faces the Earth, although there is some libration because the Moon's orbit is not perfectly circular. A tidally locked body in synchronous rotation takes just as long to rotate around its own axis as it does to revolve around its partner.

Usually, only the satellite is tidally locked to the larger body. However, if both the mass difference between the two bodies and the distance between them are relatively small, each may be tidally locked to the other; this is the case for Pluto and Charon.

This effect is employed to stabilize some artificial satellites.

One form of hypothetical tidal locked planets are eyeball planets, that in turn are divided into "hot" and "cold" eyeball planets.

Consider a pair of co-orbiting objects, A and B. The change in rotation rate necessary to tidally lock body B to the larger body A is caused by the torque applied by A's gravity on bulges it has induced on B by tidal forces.


...
Wikipedia

...